Installation Manual

Marine Pro.

200E Series
DCU 210E/208E – Engine Panel
RP 210E/220E – Remote Panel

auto MASKIN
Installation Manual
for the
Marine Pro 200E Series

DCU 210E/208E Diesel Engine Control Unit
RP 210E/220E Remote Panel

Revision 1.6
Revised September 27, 2017

Revision history:

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2.9.2015</td>
<td>Initial release.</td>
</tr>
<tr>
<td>1.2</td>
<td>9.2.2016</td>
<td>Updated the connector pinout description page 6.</td>
</tr>
<tr>
<td>1.3</td>
<td>15.2.2016</td>
<td>Added connections drawing page 12.</td>
</tr>
<tr>
<td>1.4</td>
<td>18.3.2016</td>
<td>Thermistor 2, 3 and 4-wire drawings.</td>
</tr>
<tr>
<td>1.5</td>
<td>25.11.2016</td>
<td>RP 220E added.</td>
</tr>
<tr>
<td>1.6</td>
<td>25.09.2017</td>
<td>Added installation notes released to Ethernet and switches. Added voltage sensor inputs. Updated to SW 3.6. Communication I/O link updated.</td>
</tr>
</tbody>
</table>

Copyright © 2017 by Auto-Maskin AS.

All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Auto-Maskin AS.
Table of Content

DOCUMENT INFORMATION
- About This Manual .. 1
- Responsibilities ... 1
- Matching Firmware 1
- Ordering Information 1
- Overview of the 200 Series 2
 - DCU 210E Engine Panel 2
 - DCU 208E Engine Panel 2
 - Configuration .. 2
 - RP 210E/220E Remote Panel 2
 - Ethernet Switch 3
 - Expansion .. 3

INSTALLATION
- Panel Location ... 4
 - DCU 210E ... 4
 - DCU 208E ... 4
 - RP 210E/220E .. 4
 - Compatible panel series 4
 - General .. 4
 - Panel Cut-out .. 5
 - Mounting bracket 5
- Connectors .. 5
 - Connector kit .. 5
 - Connector pinout – DCU 210E and 208E 6
 - Connector pinout – RP 210E/220E 7

Wiring Connections 8
- General .. 8
- Grounding ... 8
- Power Supply [C1P11 – C1P12] 8
- RIO Link [C1P5 – C1P6] 9
- J1939 CANbus [C1P7 – C1P9 and C2P10 – C2P11] ... 9
- All Faults Relay [C2P1 – C2P3] 9
- Relay #1 [C2P4 – C2P6] 9
- Relay #2 [C2P7 – C2P9] 9
- Magnetic Pickup, MPU [C4P1 – C4P2] 9
- Thermistor Input [C4P6 – C4P11] 10
- Flexible I/O [I/O #1 – I/O #19] 10
- Other Interfaces .. 11

First Power-On
- Preparations ... 11
- First Power-On Wizard 11

APPENDIX A
- Typical sensor connections DCU 210E 12
Document Information

About this manual

This manual has been published primarily for professionals and qualified personnel.
The user of this material is assumed to have basic knowledge in marine systems, and must be able to carry out related electrical work.
Work on the low-voltage circuit should only be carried out by qualified and experienced personnel.
Installation or work on the shore power equipment must only be carried out by electricians authorized to work with such installations.

Responsibilities

It is the sole responsibility of the installer to ensure that the installation work is carried out in a satisfactorily manner, that it is operationally in good order, that the approved material and accessories are used and that the installation meet all applicable rules and regulations.

Note! Auto-Maskin continuously upgrades its products and reserves the right to make changes and improvements without prior notice.

All information in this manual is based upon information at the time of printing.
For updated information, please contact your local distributor.

Matching firmware

This Installation Manual is for the 200E Series of panels.
It has been updated to match the following firmware releases.

<table>
<thead>
<tr>
<th>Panel</th>
<th>Firmware</th>
<th>Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCU 210E/ 208E</td>
<td>3.6</td>
<td>August 2017</td>
</tr>
<tr>
<td>RP 210E/220E</td>
<td>3.6</td>
<td>August 2017</td>
</tr>
</tbody>
</table>

Ordering information

The Marine Pro covers a wide range of compatible products within both the 200- and 400 Series. Please visit our web site for more information.
http://auto-maskin.com/marine/
Overview of the 200 series

The drawing below shows a typical layout.

DCU 210E Engine Panel
The DCU 210E engine panel is the main building block in the 200 Series. Engine sensor values are displayed on the color touch screen, and commands and other user interaction is also here.

DCU 208E Engine Panel
The DCU 208E is basically the same as the DCU 210E, but without the color touch screen.
It saves cost being used in smaller engine rooms, where a remote panel is all that is needed.

Configuration
An ordinary PC web-browser is used to configure the DCU, using the inbuilt web-server on the DCU.

RP 210E/220E Remote Panel
The optional RP remote panel brings everything on the DCU to a remote location, with the exact same user interface. It does not need any configuration, as it is reading the configuration from the DCU.
As such, the RP can easily be retrofitted.

The RP also supports one IP-camera to be installed on the network.

Ethernet Switch

The Ethernet switch is not necessary if only one DCU 210E and one RP 210E/220E is in use. These can then be wired with an Ethernet cable directly.

It is recommended to make use of an Ethernet switch though, as it simplifies PC configuration connection and future expansion to remote panels and/or camera interface.

Note! For redundant Ethernet connection, *managed* Ethernet switches must be used.

Expansion

The basic system can be expanded with more input and output channels using the versatile RIO units (Remote I/O).

Currently, there are RIO units for

- I/O expansion, RIO 410 and RIO 210.
- Exhaust temperature monitoring, RIO 412
- Generator monitoring, RIO 425
- Load sharing, LSU 408
Installation

Installation covers panel location, wiring and first power-on.

Panel location

This section gives basic guidelines for installing the different panels.

DCU 210E

The panel is normally located in the engine room for a number of reasons.

The main reasons are:

- Local operation and overview.
- Minimize cabling requirements and cost from sensors to panel.
- Reduce of electrical noise levels resulting from long cables.

DCU 208E

This panel is also normally installed in the engine room, close to the engine. Unlike the DCU 210E and the RP 210E/220E the DCU 208E is installed on a din-rail.

The panel does not have a user interface and is normally used in unmanned engine rooms. A RP 210E/220E remote panel is used to bring the signals from the engine room to a monitoring site, e.g. bridge or wheelhouse.

RP 210E/220E

The RP remote panel is normally located at a remote place away from the engine room, but it can also be used in the engine room.

Compatible panel series

Note that the 200 series panel can be used together with the 400 series panels.

For instance can a RP 210E/220E remote panel be used to monitor a DCU 410 engine panel.

General

Panels with a screen should be mounted at about eye level and the user should have easy access to operate the panel.

Ensure easy access to the rear wiring. The panel may be mounted on the engines supporting structure provided shock absorbers are used either between the structure and the engine, or between the structure and the panel enclosure.
Panel Cut-out
The DCU and RP cut-out size is:
- 153mm width, 123 mm height

Mounting bracket

DCU 210E and RP 210E/220E
When installing the panel make sure to use the bundled screws and mounting bracket.
If installing the panel on a thicker surface than 5mm, longer flanged screws must be used. In this case M3 16mm flanged screws is recommended.
Make sure that the screws are not too long, as this will damage the panel.

Connectors

DCU 210E, DCU 208E, RP 210E and RP 220E
These are the connectors on the DCU and RP back lid.

The DCU 208E front view is the same as the DCU 210E rear view.

Connector kit
The 200E series is not shipped with mating connectors.
A complete kit is available containing all of the mating terminal blocks used on the 200 E series.
Kit 1006479 contains:
- 4 Deutsch DT series connectors (DT06–12SA).
- 50 hand crimp sockets 0.5 –1.0 mm² (16–20 AWG).
- 10 hand crimp sockets 1.0 –2.0 mm² (14–16 AWG).
- 50 sealing plugs for unused terminals.
A crimp tool is necessary for proper crimping of the mating terminals. Use Deutsch HDT–48–00 crimping tool.
Connector pinout – DCU 210E and 208E

The table below shows the connector pinout on the DCU panels.

The connector is described as e.g. C1P2. Where 1 is the connector number and 2 is the pin number.

See Appendix A to see typical sensor connections DCU 210E.

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>C1P11</th>
<th>+12/24VDC Primary Supply</th>
<th>In/Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1P12</td>
<td>0V Primary Supply</td>
<td>In</td>
<td></td>
</tr>
<tr>
<td>C1P3</td>
<td>Ground connection</td>
<td>In</td>
<td></td>
</tr>
</tbody>
</table>

RIO Link Interface

| C1P5 | Low | In |
| C1P6 | High| In |

CAN J1939 Engine Interface

C1P7	CAN 1 High	In
C1P8	CAN 1 Low	In
C1P9	CAN 1 Shield	In
C2P10	CAN 2 High – (I/O #20)	In
C2P11	CAN 2 Low – (I/O #21)	In
C2P12	CAN 2 Shield – (I/O #5)	In

All Faults Relay (Inactive on fault)

C2P1	NC	–
C2P2	Common	–
C2P3	NO	–

On Board Relay #1

C2P4	NC	–
C2P5	Common	–
C2P6	NO	–

On Board Relay #2

C2P7	NC	–
C2P8	Common	–
C2P9	NO	–

Magnetic Pickup

| C4P1 | A | In |

Modbus RTU, RS-485

C4P3	Shield	In
C4P4	Low	In
C4P5	High	In

Thermistor Input

C4P6	Thermistor #1 A	In
C4P7	Thermistor #1 B	In
C4P8	Thermistor #1 C	In
C4P9	Thermistor #2 A	In
C4P10	Thermistor #2 B	In
C4P11	Thermistor #2 C	In

Flexible I/O

C1P1	I/O #1	In/Out
C1P2	I/O #2	In/Out
C1P4	I/O #3	In/Out
C1P10	I/O #4	In/Out
C2P12	I/O #5	In/Out
C3P1	I/O #6 / Sensor Power	In/Out
C3P2	I/O #7	In/Out
C3P3	I/O #8	In/Out
C3P4	I/O #9	In/Out
C3P5	I/O #10	In/Out
C3P6	I/O #11	In/Out
C3P7	I/O #12	In/Out
C3P8	I/O #13	In/Out
C3P9	I/O #14	In/Out
C3P10	I/O #15	In/Out
C3P11	I/O #16	In/Out
C3P12	I/O #17	In/Out
C4P2	I/O #18	In/Out
C4P12	I/O #19	In/Out

1 Configurable as flexible I/O or as a 0V reference.

2 Configurable as flexible I/O or supply for 0–5V sensors.

3 Alternative I/O function is digital input only.
The table below shows the connector pinout on the RP panel.

The connector is described as e.g. C1P2. Where 1 is the connector number and 2 is the pin number.

<table>
<thead>
<tr>
<th>Power Supply</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1P11</td>
<td>+12/24VDC Primary Supply</td>
</tr>
<tr>
<td>C1P12</td>
<td>0V Primary Supply</td>
</tr>
<tr>
<td>C1P3</td>
<td>Ground connection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Switch Input</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1P1</td>
<td>Switch Input #1</td>
</tr>
<tr>
<td>C1P2</td>
<td>Switch Input #2</td>
</tr>
<tr>
<td>C1P4</td>
<td>Switch Input #3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>All Faults Relay (Inactive on fault)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C2P1</td>
<td>NC</td>
</tr>
<tr>
<td>C2P2</td>
<td>Common</td>
</tr>
<tr>
<td>C2P3</td>
<td>NO</td>
</tr>
</tbody>
</table>
Wiring Connections

The following chapter primarily assumes a DCU panel.
If installing an RP, then just disregard descriptions that is not described in the table “Connector Pinout RP 210E/220E”.

General
To protect against EMC noise, we recommend that all cables are shielded.

Note! The shield of all cables shall be connected to ground/hull, *not* to 0V!

For good electrical noise separation, consider routing some cables separate from other cables - for instance the pickup signal cable.

Note! Connect shield in one end of the cable only.

Grounding
In marine installations, ground and 0V volt should not be connected together.
In a ship installation, the hull is the “ground” whilst the battery minus is the 0V.
In the DCU system, +12/24V and 0V are filtered to ground using special filter components. This is done to reduce electrical noise entering the system.

Note! Please keep ground and 0V separated!

If ground and 0V is connected, these filters do not work properly.

Power Supply [C1P11 – C1P12]
The 200E Series is designed to run on either 12 VDC or 24 VDC supply voltage.

Note! Make sure the supply power is sourced directly from the battery, and *not* from the starter engine, as the voltage drop over the latter is significant.

Power Supply Requirements
The panel must be sourced with an 8–32VDC supply. This is the “full functionality” range.

General
Use a cable with twisted pair wires to minimize the effect of noise on the supply input.
Connect the cable straight from the battery and keep the cable as short as possible.
Use at least 1.0mm² (17 AWG) wires for the power supply.

12 V supply
If the supply voltage is in the range 8–16V, then the panel automatically assumes it is on a 12 VDC system.

24 V supply
If the supply voltage is in the range 16–32 V, then the panel automatically assumes it is on a 24 VDC system.

Alarm for Low Power Supply
The input voltage is monitored with fixed set points. The set points are as follows:
24 V supply
- Warning: <21 V
- Alarm: <18 V

12 V supply
- Warning: <11 V
- Alarm: <10 V

The persistence timer is fixed for all set points at 30 sec before a warning or an alarm.

RIO Link [C1P5 - C1P6]

DCU 210E and 208E
This is the link for the optional expansion units RIO 210, RIO 410, RIO 425 and LSU 410.
Shield the cable in the RIO end only.

RP 210E/220E
On these panels, the RIO link is used for the optional ambient light sensor ALS 210, which provides automatic adjustment of the backlight intensity.

J1939 CANbus [C1P7 - C1P9 and C2P10 - C2P11]
Engine J1939 CANbus interface for connection to the engine ECM, electronic control module.

All Faults Relay [C2P1 - C2P3]
Note that the relay is activated when there are no faults, and deactivates for any fault.
A “fault” is defined as any new instance in the alarm list, except diagnostic messages graded white.

The relay has a 1 A over-current protection on the common pin.

Relay #1 [C2P4 - C2P6]
This relay can be configured to activate for any inbuilt function.
See the configuration manual.
The relay has a 1 A over-current protection on the common pin.

Relay #2 [C2P7 - C2P9]
This relay can be configured to activate for any inbuilt function.
See the configuration manual.
The relay has a 1 A over-current protection on the common pin.

Magnetic Pickup, MPU [C4P1 - C4P2]
The engine speed pickup is connected here.
Pickup must be of Magnetic (sine-wave) or digital (square-wave) type.
Frequency range: 100 Hz – 10 KHz.
Amplitude range: 2V_{p-p} – 30V_{p-p}
Shield the cable at the pickup end only.

Modbus RS-485 [C4P3 - C4P5]
The DCU has an inbuilt Modbus™ interface, both on RS-485 and also on Ethernet. The latter is known as Modbus TCP.
Addressing wise, these are equal, and the complete I/O list is available online here:
Thermistor Input [C4P6 - C4P11]
There are two thermistor input channels on the DCU.
The channels support sensors with two, three or four wires. See figure below for recommended wiring options.

Measurement range is 95 – 60k ohm.
Detectable failure modes:
- Broken wire between A/B and C
- Short circuit between A/B and C.

Flexible I/O [I/O #1 - I/O #19]
There are nineteen Flexible I/O channels on the DCU.
Each channel can be configured for different use as described below.

Power Output
All flexible I/O can be configured as 12V 0.2A or 24V 0.2A power outputs with short circuit detection and protection.

Switched Output
All flexible I/O can be configured as 12/24V outputs on the DCU.
Each channel can be configured for any available function.

Voltage Sensor Input
All flexible I/O can be configured as voltage sensor inputs on the DCU.
The voltage sensor input is capable of measuring 0 – 32 VDC.
Input impedance is 11kΩ.

4-20mA Input
All flexible I/O can be configured as 4–20 mA analog sensor inputs on the DCU.
If the signal is out of range, a warning will be displayed.
Out of range is defined as:
- < 2 mA (broken wire)
- > 22 mA (short circuit)
Note that the internal impedance is 50Ω.

Switched Input
All flexible I/O can be configured as 12/24 V input channels.
Each channel can be configured as an engine switch, e.g. Oil Pressure Low switch, or it can be configured to activate an inbuilt function, eg. Automatic Start.
Input impedance is 11kΩ.
Use the power supply voltage from C1P11 or a configurable I/O set to power the switch inputs.
See the Configuration manual for more information.
Other Interfaces

Ethernet MODBUS/TCP

The DCU connects to a LAN (Local Area Network) or directly to a PC through a standard CAT-5 network cable connected to the RJ45 port. The IP address in the DCU and/or the local PC may need to be changed in order to access the DCU configuration from a PC.

Note! Do not bend the Ethernet cable or pull the cable sideways more than necessary during installation.

Use a strain relief for the cable making the cable length no more than 50 cm between the connector and the strain relief.

USB Memory Interface

This interface is used for two purposes:

- Update of the current configuration file (not RP panels).
- Update the panel firmware (all panels)

Copy a valid configuration and/or firmware file to a USB memory stick, and insert the USB memory stick in the panel.

Follow the instructions that will be appearing on the screen.

First Power-On

Preparations

First, make sure to consult the Quick Installation Guide (QIG) that came with the panel.

Installation

Install the panel according to guidelines in the QIG.

Connections

Connect power to the panel according to guidelines in the QIG.

First Power-On Wizard

The DCU (not DCU 208E) will display the first power-on wizard at the first power up after delivery, or after a factory reset of the panel.

All wizard settings can be changed later.
Appendix A

Typical sensor connections DCU 210E

Notes

1. Configurable as flexible I/O:
 24V Out, Switch Input, User Config Output,
 4-20 mA & Voltage Sensor.

2. 0 V reference.

3. 5 V Supply for 0-5 V sensors.

4. Pickup (A) 0 V.

5. Pickup (B).

There are four Deutsch DT connectors,
with 12 pins in each connector.
E.g C3.P8 is connector 3, pin 8.